SHELL :

A Shell provides you with an interface to the Unix system and kernel.

the shell translate result ﬁ @

back to user.

=

Application |

Unit-1

Introduction

| . Features of Unix OS

It gathers input from you and executes programs based on that input.
When a program finishes executing, it displays that program's output.

Shell is an environment in which we can run our commands, programs, and
shell scripts.

There are different flavors of a shell, just as there are different flavors of

operating systems. Each flavor of shell has its own set of recognized
commands and functions.

Shell is also known as commands.

User

IR

the shell accepts commands from user

Shell

Shell| =~ | Application

t 4

|

the shell reads the result
back from the kernel.

f

Ke l this shell translates commands to
@ binary code or set up to execute binary

Shell Types:

In UNIX there are two major types of shells:

1. Bourne shell
2. c shell

. The Bourne shell

: If you are using a Bourne-type shell, the default

prompt is the $ character.

. The C shell: If you are using a C-type shell, the default prompt is the %
character.

There are again various subcategories for Bourne Shell which are listed as
follows:

e Bourne shell (sh): The original UNIX shell was written in the mid-
1970s by Stephen R. Bourne while he was at AT&T Bell Labs in New
Jersey.

It is most widely used shell in unix world.

The Bourne shell was the first shell to appear on UNIX systems,
thus it is referred to as "the shell".

The Bourne shell is usually installed as /bin/sh on most versions
of UNIX. For this reason, it is the shell of choice for writing
scripts to use on several different versions of UNIX.

It provides $ prompt on unix installation as trademark of bourne
shell.

e Korn shell (ksh): korn shell is the unix shell developed by David
korn of Bell labs.

Is is considered as the family member of Bourne shell as it uses the $
symbol of Bourne shell.

It is also names as ksh programmatic ally and it most widely used
shell.

it can completely replaced bourne shell in a system and has more
functions that are built into shell making it more efficient.

e Bourne Again shell (bash): It is the free version of Bourne shell
and comes with all UNIX/Linux systems as free with some additional
features like command line editing.

Its program name is bash. It can read commands from file called
scripts.

Like all Unix shells it supports the following:

. File name wildcarding

. Piping

. Hear documents

. Command execution

. Variables and control structures for condition testing and
iteration.

e POSIX shell (sh):
The different C-type shells follow:

e Cshell (csh) :

Is a UNIX enhancement written by Bill Joy at the University of
California at Berkeley.

C shell along with Bourne and Korn, are there most popular and
commonly used shells. csh is the program name for C shell.

Incorporated features for interactive use, such
as aliases and command history.

Includes convenient programming features, such as built-in
arithmetic and a C-like expression syntax.

For the C shell the:
Command full-path name is /bin/csh.
Non-root user default prompt is hosthname %o.
Root user default prompt is hostname #.

e TENEX/TOPS C shell (tcsh): it pronounced as tee-cee shell. it is a

compatible version of the C shell. it is used in linux environment.

pdksh: It stands for Public Domain Korn Shell. Linux offers pdksh as a
substitute of ksh shell.

Shell Features:

1.

Interactive environment: the shell allows user to create a dialogue,
i.e. communication channel between user and the host unix system.
this dialogue terminates until the user ends the session.

. shell scripts: A shell script is small computer program that is designed

to be run or executed by the Unix shell, which is a command-line
interpreter. A shell script is basically a set of commands that the shell
in a Unix-based operating system follows. Like actual programs, the
commands in the shell script can contain parameters and
subcommands that tell the shell what to do. The shell script is usually
contained in a simple text file.

. Input/output redirection: it is a function of shell that redirects_the

output from program to a destination other than the screen. this way,
user can save output from command into a file and redirect it into a
printer, another terminal on the network or even other program.
similarly, a shell can make a program that accepts input from other
than the keyboard by redirecting its input from other source.

. Piping Mechanism: Piping connects the output of one process to the

input of a second. Piping uses the symbol "|". A filter is a process
which is between two pipes. It simply changes the information coming
down the pipe.

Standard input for a process can be drawn from the script file itself.
This uses the special redirection symbol "<<". The name which follows
the redirection symbol is a tag for the end of the input. That is, the
contents of the script file will be read as standard input to the process
until a input line matching the name following the redirection symbol.

. Metacharacter Facilities/filename substitution: shell recognize the *,?

or [..] as special characters when reading the argument from a
command line. then shell perform file hame expansion on this list
before executing the request program.

Ex: Is s* -- it substitutes all the file names

6. Background Processing: A multitasking facility allows the user to run
command in the background. This allows the command to be
processed while the user can proceed with other tasks. when
background task is completed, user is notified.

7. Customize Environment: the shell is your working environment.
facilities are available by which the shell can be customized for your
personal need.

8. programming language construct: the shell includes features that
allow it to be used as programming language. these feature can be
used to build shell scripts that perform complex operation.

9. shell variables: the user can control the behavior of shell as well as
other programs and utilities, by storing data in variables.

Kernel:

Unix system has 3 levels: user, kernel and hardware.

A kernel can be contrasted with a shell, the outermost part of an operating
system that interacts with user commands.

A kernel is the core component of an operating system.

Using inter process communication and system calls, it acts as a bridge
between applications and the data processing performed at the hardware
level.

When an operating system is loaded into memory, the kernel loads first and
remains in memory until the operating system is shut down again.

The kernel is responsible for low-level tasks such as disk management, task
management and memory management.

Block diagram of System kernel:

https://searchdatacenter.techtarget.com/definition/shell

us€r programs

libraries
trap.,....... .
Ljur L‘?—c' ——————————— -‘-. :—-:-‘ .- -- ‘—--.T-.'-: -. -;--.'Ji ————————————
Kernel Level
A System call interface

v SR S ;]

A : inter-process .

Sowbgeten: o | i

’ A — W e
. control : scheduler
subsystem aosesllllilililiiiil
buffer cache memaory :
1 T : management
- —y L] e

character . block |
device \drivcm l
v hardware control v

lf.crncl Lcw:i ______________________________________

Hardware Level
hardware

Figure 2.1. Block Diagram of the System Kernel

Above Figure gives a block diagram of the kernel, showing various modules
and their relationships to each other.

In particular, it shows the file subsystem on the left and the process control
subsystem on the right, the two major component of the kernel.

The diagram serves as a useful logical view of the kernel, although in
practice the kernel deviates from the model because some modules interact
with the internal operations of others.

Figure shows three levels: user, kernel, and hardware.

The system call and library interface represent the border between user
programs and the kernel.

System calls look like ordinary function calls in C programs, and libraries
map these function calls to the primitives needed to enter the operating
system.

Assembly language programs may invoke system calls directly without a
system call library, however. Programs frequently use other libraries such as
the standard I/0 library to provide a more sophisticated use of the system
calls. The libraries are linked with the programs at compile time.

The figure partitions the set of system calls into those that interact with the
file subsystem and those that interact with the process control subsystem.
The file subsystem manages files, allocating file space, administering free
space, controlling access to files, and retrieving data for users.

Processes interact with the file subsystem via a specific set of system calls,
such as open (to open a file for reading or writing), close, read, write, stat
(query the attributes of a file).

The file subsystem accesses file data using a buffering mechanism that
regulates data flow between the kernel and secondary storage devices.

Device drivers are the kernel modules that control the operation of
peripheral devices. Block I/O devices are random access storage devices
alternatively, their device drivers make them appear to be random access
storage devices to the rest of the system.

The process control subsystem is responsible for process synchronization,
interprocess communication, memory management, and process
scheduling.

The memory management module controls the allocation of memory.

The scheduler module allocates the CPU to processes. It schedules them to
run in turn until they voluntarily relinquish the CPU while awaiting a resource
or until the kernel preempts them when their recent run time exceeds a time
quantum.

